Weighted mean-field theory for the random field Ising model
نویسندگان
چکیده
منابع مشابه
Weighted Mean Field Theory for the Random Field Ising Model
We consider the mean field theory of the Random Field Ising Model obtained by weighing the many solutions of the mean field equations with Boltzmann-like factors. These solutions are found numerically in three dimensions and we observe critical behavior arising from the weighted sum. The resulting exponents are calculated.
متن کاملTheory of the Random Field Ising Model
A review is given on some recent developments in the theory of the Ising model in a random field. This model is a good representation of a large number of impure materials. After a short repetition of earlier arguments, which prove the absence of ferromagnetic order in d ≤ 2 space dimensions for uncorrelated random fields, we consider different random field correlations and in particular the ge...
متن کاملRandom Field Ising Model
This paper gives an introduction to the Random Field Ising Model (RFIM). Since its rst discussion in the paper by Imry and Ma 1] there has been great interest in this model, since Ising or Ising-like systems in random elds are a good representation of a large number of impure materials. These show features that can not be understood by studying ideal systems (i.e. Ising model). There are a lot ...
متن کاملMaximal Mean Field Solutions in the Random Field Ising Model: the Pattern of the Symmetry Breaking
In this note we study the mean field equations for the 3d Random Field Ising Model. We discuss the phase diagram of the model, and we address the problem of finding if such equations admit more than one solution. We find two different critical values of β: one where the magnetization takes a non-zero expectation value, and one where we start to have more than one solution to the mean field equa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 1995
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/28/14/015